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Intermittency in spin-wave instabilities
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The dynamics of the magnetization of yttrium iron garnet spheres was studied by ferromagnetic resonance
both within the subsidiary absorption regime and the coincidence regime of the first-order Suhl instability. The
absorption signal shows auto-oscillations with a rich variety of nonlinear behavior. Along with other routes to
chaos we observed intermittency and identified each of the Pomeau-Manneville types I–III. Within the chaotic
regime crisis-induced intermittency, on-off intermittency, and noise-induced intermittent behavior were ob-
served.@S1063-651X~99!00602-9#

PACS number~s!: 05.45.2a, 75.40.Gb, 76.50.1g
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I. INTRODUCTION

During the last two decades nonlinear dynamic pheno
ena have been observed experimentally in a variety of
tems ranging from mechanical devices and computer
electronic circuits to human heart and brain dynamics. M
netic systems have extensively been investigated, e.g.
high-power ferromagnetic resonance~FMR! @1–3# for more
than ten years. Most of the well-known nonlinear dynam
phenomena, as well as new ones, have been observe
these systems. Up to now, however, intermittency in FM
experiments has been reported rather scarcely in the lit
ture @4,5#. To fill this gap we present a detailed study
various intermittent phenomena in high-power FMR expe
ments.

We have studied the nonlinear spin dynamics of yttriu
iron garnet~YIG! spheres at the first-order Suhl instabili
under two physically different conditions: In the coinciden
regime the parametric excitation of spin waves is affected
resonant pumping on the FMR mode, while, under sub
iary absorption conditions, the pumping frequency is w
above the FMR mode, i.e., the pumping is nonresonant
requires much higher microwave power to reach the thre
old for spin-wave excitation. These different types of exci
tion lead to physically well-distinguishable behavior abo
the instability threshold~Sec. II!. While under subsidiary ab
sorption the system is only weakly chaotic, with fractal d
mensions in the order of 2 to 3, in the coincidence regi
one often encounters chaotic behavior with attractor dim
sions between 5 and 10 or even higher@6#. In the latter case
a special type of coupling between spin-wave modes lead
many internal degrees of freedom being involved in the
namics, and the high dimensionality is manifested in typi

*Electronic address: benner@hrzpub.tu-darmstadt.de
†Electronic address: wolfram@mpipks-dresden.mpg.de
‡Electronic address: antanas@ant.pfi.lt
PRE 591063-651X/99/59~2!/1622~11!/$15.00
-
s-
e
-

by

c
in

a-

-

y
-

ll
d

h-
-

e
n-

to
-
l

phenomena such as multistability and multiple time scale
Intermittency phenomena are affected by these differ

excitation conditions as well. In this paper we present exp
mental observations and analyses on all Pomeau-Manne
intermittency types~Sec. III!, crisis-induced intermittency
and on-off intermittency~Sec. IV!. We present examples o
how to relate the intermittency mechanisms to the underly
parametric process or directly to the specific type of non
ear couplings between spin-wave modes~see the Appendix!.

II. HIGH-POWER FERROMAGNETIC RESONANCE
AT THE FIRST-ORDER SUHL INSTABILITY

Suhl’s first-order spin-wave instability@7# is based on the
parametric excitation of spin waves through transve
pumping on the uniform magnetization. His theory sta
from the idea of weakly coupled eigenmodes with nonline
couplings becoming efficient only at higher amplitudes. Co
sidering only nonlinear terms of lowest order~arising from
so-called three-magnon processesof the corresponding
Hamiltonian! a coupled set of amplitude equations for t
uniform modea0 and for the spin wave modesak is ob-
tained,

ȧ0~ t !52@ i ~v02vp!1G0#a02(
kk8

rkk8
* akak82 igh,

~1!

ȧk~ t !52F i S vk2
vp

2 D1GkGak1(
k8

rkk8a0ak8
* ,

wherev0 andvk are the corresponding eigenfrequencies,G0
and Gk are the phenomenological damping parameters,vp
andh are the microwave pumping frequency and amplitu
g is the gyromagnetic factor, andrkk8 , finally, denote the
nonlinear coupling coefficients, which are of dipolar orig
and essentially determined by the specific type of interac
eigenmodes~see, e.g., Ref.@8#!. The parametric process i
characterized by the decay of the pumped uniform mode
1622 ©1999 The American Physical Society
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PRE 59 1623INTERMITTENCY IN SPIN-WAVE INSTABILITIES
two spin waves or magnetostatic modes of half the pump
frequencyvk5vp/2 and opposite wave vectors~k, 2k! ac-
cording to the conservation of energy and quasimoment
This instability can either be observed off resonance~i.e.,
with the pumping frequency far away from the usual fer
magnetic resonance,vpÞv0) as asubsidiary absorption, or
directly on the FMR line (vp5v0) within the coincidence
regime. Note that in ferromagnetic spheresv05gH is pro-
portional to the magnetic field, whilevk depends in a more
complicated way onH as well as on the magnetization an
on the amount and orientation of wave vectork.

A. Nonresonant pumping

In view of the extremely small thresholds typical for YIG
high-power FMR experiments can, in principle, be p
formed with a conventional ESR spectrometer. We ha
studied the subsidiary absorption at about 9.3 GHz. Inst
of a standard reflection-type cavity we used a bimo
transmission-type cavity of quality factor 3000, which allow
a nearly complete separation of the strong microwave in
power from the weak time-dependent output signal. T
way the signal-to-noise ratio was improved by almost 20 d
The squared amplitude of the driving fieldh at sample posi-
tion is proportional to the input powerPin , which was sup-
plied by a microwave generator, and the transmitted sig
Ptr is proportional to the squared amplitudeua0u2 of the uni-
form mode. By means of a digital oscilloscope and an in
grating voltmeter, we recorded both the time dependenc
Ptr(t) and its time averagePtr on variation of input power
Pin and magnetic fieldH. The data presented below we
obtained at room temperature on a highly polished spher
pure YIG, 0.71 mm in diameter, and the magnetic field w
applied either in̂ 100& or ^111& orientations.

The subsidiary absorption manifests as an additional
sorption structure at lower field, which is well separat
from the FMR main resonance and shows a drastic broa
ing with increasing microwave power, accompanied by au
oscillations and sequences of bifurcations. We have syst
atically analyzed@6# the dynamic behavior of the subsidia
absorption signal at fixed pumping frequency, as presente
Fig. 1. The lower line shows the dependence of the S
threshold onH ~the so-calledbutterfly curve!. ~Here and in
the corresponding figures below,Pin was normalized to the
minimum threshold.! The broad bumps at 1.6 and 1.9 kO
have been explained by the interaction with elastic or m
netostatic modes@9#. The next line indicates a Hopf bifurca
tion, and corresponds to the onset of auto-oscillations. F
ther bifurcation lines above separate regimes of differ
time behavior, e.g., period doublings, quasiperiodicity, int
mittency, or chaos. The steep increase of the threshold a
kOe indicates that the bottom of the spin-wave band
comes larger thanvp/2, and the parametric excitation of sp
waves is no longer efficient.

B. Resonant pumping

Resonant pumping of both the uniform FMR mode an
spin-wave pair (vp5v052vk) is restricted to a limited fre-
quency range. In the case of YIG spheres, this coincide
regime ranges from 1.8 to 3.4 GHz~680–1280 Oe for
Hi^100&). For lower field the FMR vanishes due to the o
g

.
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currence of magnetic domains. For higher fieldv0 falls be-
low the spin-wave band and, keeping the resonance co
tion vp5v0 , a changeover to the second-order instabil
takes place.

Owing to the resonant pumping condition, the fixe
pumping frequency of a microwave cavity would also fix t
magnetic field, i.e., would restrict the role ofH as an inde-
pendent control parameter. However, profiting by the re
nance amplification of the FMR mode, experiments in t
coincidence regime require much less microwave powe
reach the instability threshold~typically some 10mW for
high-quality YIG samples!. So, for our experiments in the
coincidence regime we preferred a broadband~1–4 GHz!
transmission-type setup described elsewhere@2#, which al-
lows a variation ofvp simultaneously withH. Instead of a
microwave cavity, we used two microcoils with perpendic
lar orientation in order to minimize mutual disturbances
crosstalk. The signal transmitted to the pickup coil was a
plified, detected by a diode, and recorded in a similar way
described above.

For resonant pumping within the coincidence regime
first-order Suhl threshold shows up as a sharp and asym
ric break at the top of the FMR. With increasing input pow
the break becomes broader and may be followed by fur
breaks, resulting in a complex multistability~see Fig. 2!.
This multistability is connected with a variety of auto
oscillations. Details have been presented in the literature
have been explained in terms of a multimode model incl
ing the specific properties of discrete magnetostatic mode
the parametric process@8,10,11#. According to this model the
sudden jumps from one level to another are induced by
nonlinear coupling or decoupling of certain spin-wa
modes.

FIG. 1. Dynamics in the subsidiary absorption regimen
59.26 GHz! with respect to magnetic fieldH and input microwave
power Pin . The lowest line indicates the Suhl threshold, and
lines above separate regimes of different time behaviors, e.g.,
riod doublings~P2,P4!, quasiperiodicity~QP!, or chaos. Intermit-
tency is observed in several parameter regimes, e.g., type II at 1
Oe and 12-15 dB, type III at 1900 Oe and 11–15 dB, and cri
induced intermittency at 1900 Oe and 16 dB.
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C. Observed routes to chaos

As a general result, we found that a global corresp
dence to one of the well-known scenarios of Feigenba
Ruelle, Takens, and Newhouse, or Pomeau and Manne
@12# does not occur, but a variety of parts from all of the
This obviously corresponds to the fact that the nonlineari
of a real system are more complicated and based on a la
number of internal degrees of freedom than those of
simple models from which these standard routes have b
derived. The physical meaning of the degrees of freedom
probably that of specific eigenmodes or a collective mot
of several of them.

Quasiperiodicity with up to three fundamental frequenc
was observed both in subsidiary absorption~cf. Fig. 1! and in
the coincidence regime. In the latter case, for instan
closely above the threshold the FMR signal starts to au
oscillate with typical frequencies ranging from 100 to 4
kHz. A few dB above, a second fundamental frequen
occurs—corresponding to a second Hopf bifurcation
together with several mixing frequencies and harmon
which indicate that the attractor is a 2 torus. Very seldom, w
also found a third fundamental frequency occurring with
an extended parameter range. More often, instead of a
Hopf bifurcation and a collapse of the resulting 3 torus
chaos@13# we observed the spin system switch over to
coexisting stable attractor.

The changeover to chaos was generally accompanied
jump of Ptr, but did not arise from a 2 or 3torus. Hence it
could not be related to a Ruelle-Takens-Newhouse scen
Instead we suppose that the chaotic behavior results fro
sudden increase of the number of coupled modes, whic
related to some global symmetry-breaking bifurcation@6#
and does not follow one of the standard routes.

Period-doubling routes, as reported previously from b
transverse and parallel pumping experiments@14,15#, were
observed up to period 8, but occurred rather seldom. V
scarcely we even observed a sequence ofperiod triplings
~not to be confused with a period-3 window! up to period 9.
More often, however, only a single period doubling w
found, which remained stable for a rather extended par
eter range and then changed directly over to chaos. Tho
the Feigenbaum route is known to be very sensitive to no
which might have suppressed further period doublings,

FIG. 2. Multistability in the coincidence regime (n
52.37 GHz,H5840 Oe). The averaged transmitted powerPtr is
plotted vs the input powerPin ~normalized to the Suhl threshold!.
Different dc levels correspond to different types of dynamics. P
odic behavior is indicated by its periodicity~P1,P2!, and chaotic
behavior by the attractor dimension~accuracy61). Chaos-chaos
intermittency is observed at the upper chaotic level~INT!.
-
,

lle
.
s
er
e
en
is
n

s

e,
-

y

s,

ird

y a

io.
a

is

h

ry

-
gh
e
e

rather interpret the observed behavior to represent an in
pendent route.

Intermittency was observed in several parts of param
space, in subsidiary absorption as well as in the coincide
regime. A detailed study of the intermittent routes to cha
and various types of the intermittent behavior inside the c
otic regime are the subjects of the following sections.

III. POMEAU-MANNEVILLE INTERMITTENCY

Pomeau-Manneville intermittency occurs in conjuncti
with a bifurcation where a formerly stable periodic motio
~i.e., a limit cycle! becomes unstable@16#. In a suitable Poin-
carésection this is equivalent to a stable fixed point beco
ing unstable via a codimension–1 bifurcation. The fix
point of a one-dimensional map can become unstable v
local bifurcation in three basically different ways: the eige
value crossing the unit circle at11, two complex conjugate
eigenvalues crossing the unit circle simultaneously, and
eigenvalue crossing the unit circle at21. The three types of
Pomeau-Manneville intermittency correspond to these th
different bifurcations.

All these types of ‘‘classical’’ intermittency have bee
observed in a large variety of experimental situations. As
as we know, however, high-power FMR in YIG spheres re
resents the only physical system where all three types
intermittency can be observed with a single experimen
setup. While the phenomenological analysis of our d
yields convincing evidence for each intermittency type, t
physical understanding of their mechanisms in terms of sp
wave dynamics is less obvious@17# and highly nontrivial. In
order to obtain an idea of the physical background, we tr
to relate these specific bifurcations to the underlying pa
metric spin-wave excitation described by Eq.~1!. As an ex-
ample, in the Appendix we present the physical conditio
for the occurrence of a subcritical Hopf bifurcation, which
characteristic of the second one of these types.

A. Intermittency of type I

Type-I intermittency is related to a tangent bifurcatio
where stable and unstable fixed points merge. Slightly ab
the bifurcation the Poincare´ map contains a narrow chann
near the merging point. Then the system evolves through
channel, and the dynamics is almost periodic with amp
tudes showing a monotonous s-shaped increase with min
slope at the center of the channel. Figure 3 shows two
perimental time series representing different manifestati
of this type of behavior.

The simplest map exhibiting type-I intermittency is give
by

xn115e1xn1xn
2 , ~2!

wheree.0 is the distance in parameter space from the
furcation point. In order to reconstruct a corresponding m
from a time-continuous system, which is in general mu
more complex, one has to find or construct an appropr
system variable which allows the reduction to a map. W
have reconstructed such a map from both experimental t
series of Fig. 3 in a different way. The upper series rep
sents a manifestation of type I which is observed more

i-
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PRE 59 1625INTERMITTENCY IN SPIN-WAVE INSTABILITIES
quently in experimental systems. An appropriate return m
is constructed by simply taking the local maxima asxn . The
lower time series exhibiting decreasing and reincreasing
plitudes reflects the periodic channels in a more involv
way. Here we took the increment of the oscillation amp
tudes rather than directly the maxima. Figure 4 shows
return map reconstructed from the lower data set of Fig
together with the corresponding parabola which was
tained from a least square fit.

FIG. 3. Examples of time series showing type-I intermitten
Top: n52.414 GHz,H5840 Oe, andPin50.66 dBm. Laminar
intervals are characterized by increasing oscillation amplitudes
interrupted by short chaotic bursts. Bottom:n52.496 GHz, H
5840 Oe, andPin57.04 dBm. The laminar intervals correspond
‘‘channels’’ of small-amplitude oscillations separated by larg
amplitude chaotic intervals of long duration.

FIG. 4. First-return map extracted from the time series of Fig
~bottom!. The dashed line is a fit to the quadratic map@Eq. ~2!#,
generic for type-I intermittency:xn1150.09211.045xn10.273xn

2 .
p

-
d
-
e
3
-

Assuming the reinjection to the channel region to be h
mogeneous and uncorrelated, it is possible to calculate
statistical distribution of the laminar lengths, i.e., the leng
of the time intervals during which the system behaves i
periodic manner. The theoretical distribution exhibitin
square-root singularities at zero and at a maximum len
l max is given by the dashed curve in Fig. 5. Moreover, t
mean value of the laminar lengths^l & is expected to scale
with the deviation from the critical pointe like ^l &;e21/2.

The most characteristic feature of this distribution is t
strict cutoff atl max. To compare this result with experimen
tal data, however, one has to take into account that the
namics of real systems is always affected by noise. Typ
intermittency has turned out to be very sensitive to the pr
ence of noise, which becomes most evident when lookin
the distribution of laminar lengths. The full curve in Fig.
demonstrates how this distribution is affected by noise. T
strict cutoff at l max is smeared out, and a long exponent
tail evolves reflecting the fact that now arbitrarily long res
dence times become possible.

We have developed a computer program which allo
one to separate laminar and chaotic intervals of the t
series in an intelligent way. The program includes the ap
cation of several operations on the whole data set, e.g.,
ferent types of local averaging, numerical differentiatio
subtraction of subsequent extrema, etc., which allow one
transform the data set in a way that the two different sta
~here laminar and chaotic! can be separated by fixing som
boundary line. By determining the lengths of the time inte
vals between two subsequent crossings of this line, one
tains statistics for the laminar state and for the chaotic st
respectively. The distribution of the laminar lengths obtain
from experimental data sets like that of Fig. 3 is shown
Fig. 6. The similarity with the simulated noisy distribution o
Fig. 5 is obvious.

.

nd

-

3

FIG. 5. Influence of noise on the distribution of laminar lengt
for type-I intermittency after Ref.@18#. The dashed line gives the
theoretical result in absence of noise, and the solid line results f
a simulation with additional noise. The latter distribution is exp
nential for largel , and the mean lengtĥl & is shifted to a smaller
value.
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1626 PRE 59J. BECKERet al.
B. Intermittency of type II

Type II is related to a subcritical Hopf bifurcation, i.e
when the formerly stable fixed point in the Poincare´ section
becomes unstable via collision with an unstable limit cyc
As a result, the system spirals out of the vicinity of the fix
point. To describe this type of dynamics at least a tw
dimensional map is needed, and a first-return map of a si
coordinate does not give reliable information, in contrast
the previous case. Close to the bifurcation point two differ
periodicities appear in the system dynamics: one repres
ing the period of the system piercing the Poincare´ plane, and
the other reflecting the spiral motion, which can in first a
proximation be considered as the period of the former
stable limit cycle.

In the experimental time series~Fig. 7!, the first one cor-
responds to the carrier frequency and the second one sh
up indirectly via the slow beat which appears most p
nounced in the long periodic phases. These two frequen
together with a variety of harmonics and mixing frequenci
are clearly manifested in the spectrum presented in Fig.

The experimental distribution of the laminar lengths
gether with the best fit to the theoretical distribution functi
@12#,

N~ l !;
e2e4e l

~e4e l21!2 , ~3!

FIG. 6. Experimental distribution of laminar lengths of the tim
series shown in Fig. 3. The data set consisted of 7.53105 data
points. The solid line is a fit to the exponential tail of the distrib
tion.

FIG. 7. Example of a time series showing type-II intermittenc
n59.257 GHz,H51590 Oe, andPin515 dB. The laminar inter-
vals are quasiperiodic, the low-frequency amplitude modulation
been stressed by the dashed envelopes.
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is shown in Fig. 9.
In this case the influence of noise seems to be much

important than for type I. The magnetic-field dependence
the mean laminar length in Fig. 10 is in very good agreem
with the theoretical power laŵl &;e21 with e5uH2Hcu.

C. Intermittency of type III

Type-III intermittency occurs in conjunction with an in
verse period-doubling bifurcation, i.e., when the stable fix
point becomes unstable via the collision with an unsta
period–2 orbit. If the fixed point occurs at zero, the syst
will evolve out of the region around it by alternating betwe
positive and negative values with growing amplitude. T
first-return map close to the fixed point is given by

xn1152~11e!xn2uxn
3 . ~4!

In the continuous time domain one observes the strictly
riodic motion becoming unstable toward oscillation with a
ternating sign and growing amplitude. An example of
experimental time series and the reconstructed return
are shown in Figs. 11 and 12, respectively.

.

s

FIG. 8. Fourier spectrum of the time series shown in Fig. 7. T
fundamental frequencies occur atf 15385 kHz andf 25100 kHz.
All strongest spectral components, indicated by vertical bars, w
identified to present mixing frequenciesm f11n f2 , m,n integer,
umu<3 andunu<10. The frequency splittingD54 f 22 f 1515 kHz
occurring everywhere in the spectrum reflects the amplitude mo
lation of the time series.

FIG. 9. Experimental distribution of the laminar lengths.n
59.255 GHz,H51592 Oe, andPin515.5 dB. The solid line is a fit
to the theoretical distribution for type-II intermittency, Eq.~3!.



i-
ra
ag

d
op

on
c
a

f t
e
in

ho
e
e

d
si-

-
en-

of
ti-

by
-
or
er

en

it-

o
ri

ig.

ted

ar
or
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The laminar intervals of the original signal show the typ
cal spreading up of successive maxima. In order to ext
this part of the signal, we have recorded the sliding aver
over exactly one period~Fig. 11, bottom!. Thus the dominat-
ing period-1 component is suppressed, while the perio
component is retained and can be further analyzed by pr
algorithms. Note that successive maximax̂n of the averaged
signal occur at double period. Using these maxima for c
structing a first-return map, as done in Fig. 12, is, in fa
equivalent to a second-return map of the original time sign
This means, e.g., that an alternating sign characteristic o
negative eigenvalue of the respective bifurcation is abs
from this map. The map shows the expected nonlinear
crease, fitted by a cubic parabola, together with a horses
shaped chaotic repeller responsible for reinjection. The
perimental distribution of the laminar lengths fits well th
theoretical result@12#:

N~ l !;
e3/2e2e l

~e2e l21!3/2. ~5!

FIG. 10. Inverse mean laminar length^l &21 vs magnetic field
H. The solid line represents a least square fit to a linear depend
and yieldsHc51601.5 Oe.

FIG. 11. Example of a time series showing type-III interm
tency.n52.385 GHz,H5800 Oe, andPin58.49 dBm. Top: origi-
nal signal; the laminar intervals exhibit the typical spreading up
successive maxima. Bottom: same signal averaged over one pe
ct
e
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-
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In Fig. 13, instead ofN, we have compared the integrate
distribution which is less sensitive to noise, but more sen
tive to systematic deviations.

IV. CHAOS-CHAOS INTERMITTENCY

In our experiment, the majority of intermittency phenom
ena is not of Pomeau-Manneville type. More often, one
counters intermittent transitions between different types
chaotic behavior within the chaotic regime. We have iden
fied different types of this behavior.

A. Crisis-induced intermittency

This type of chaos-chaos intermittency was described
Grebogi, Ott, and Yorke@19,20# and related to the occur
rence of a crisis, which means the local collision of one
two chaotic attractors with an unstable periodic orbit. Eith

ce

f
od.

FIG. 12. First-return map extracted from the time series of F
11 ~bottom!. The dashed line is a fit to the second iterate of Eq.~4!
generic for type-III intermittency:xn1251.056xn10.291xn

3 . In or-
der to exclude the reinjecting part of the map, our fit was restric
to xn<1.2.

FIG. 13. Integrated experimental distribution of the lamin
lengths. The solid line is a fit to the theoretical distribution f
type-III intermittency.
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1628 PRE 59J. BECKERet al.
the merging of two formerly separate stable chaotic attrac
or the abrupt widening of an attractor leads to intermitt
jumps between the two attractor regions. Typical experim
tal time series are shown in Figs. 14 and 15.

The three extended plots of chaotic bursts show str
similarities in their initial phase, which directly reflects th
local character of the underlying bifurcation: the trajecto
always escapes from the former chaotic attractor at the s
phase space area where the collision with the unstable
odic orbit takes place. The unstable periodic orbit gener
represents a large amplitude oscillation. Here the first
increasing oscillations of the bursts characterize the contr
ing phase where the trajectory approaches the orbit along
stable manifold. The following decreasing oscillations cor
spond to the expanding phase where the trajectory is repe
along the unstable manifold, ending up again at the form
chaotic attractor. This indicates that we are dealing wit
homoclinic crisis. The duration of the expanding phase of
orbit was found to be definitely longer than the contract
phase, which is consistent with the fact that in dissipat

FIG. 14. Time series representing a homoclinic crisis atn
59.258 GHz,H51877 Oe, andPin516.5 dB~cf. Fig. 1!.

FIG. 15. Extended plot of the chaotic bursts. The input mic
wave powerPin amounts to~from top to bottom! 15.5, 16.5, and
17.0 dB.
rs
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systems the amount of the unstable exponents has to
smaller than the amount of the stable exponents. The va
tion of input power leaves the initial part of the bursts u
changed and only affects the duration of the bursts.

If the chaotic mixing within the attractor is sufficientl
fast, i.e., the system ‘‘forgets’’ initial conditions faster tha
the average residence time, the distribution of the length
expected to be exponential. Specific properties of the
namic system show up in the dependence of the mean la
nar length on the deviation from the critical pointe. Here
one finds the power laŵl &;e2g, with the exponentg
being system dependent@21#. The value ofg depends on the
Lyapunov exponents of the system, eigenvalues of the
stable periodic orbit participating in the crisis, and on t
type of the crisis. For both homoclinic and heteroclinic cris
analytical expressions for the exponentg are given in Refs.
@6,21#. Note that the value ofg is generally noninteger. Ex
perimentally obtained power laws are shown in Fig. 16.

We tried to check the consistency of the obtained sca
exponents with theoretical predictions by estimating the c
tracting and expanding eigenvaluesbs and bu for the un-
stable periodic orbit. In view of the low dimensionality o
chaos in subsidiary absorption, a two-dimensional Poinc´
section seems adequate to characterize the stability of
orbit. For the present case of a homoclinic crisis we have@6#

g'
1/2

12ts /tu
, ~6!

wheret i
21[ zlnubiuz, i 5s, u, denote the characteristic con

traction and expansion rates, respectively. It is tempting
correlate these rates with the duration of increasing and

-

FIG. 16. Scaling behavior of the mean ‘‘laminar’’ length wit
respect to the magnetic field. Data were taken at three diffe
microwave powers: 15.5 dB (h),16.5 dB (s), and 17.0 dB (D).
The double-logarithmic plot yields scaling exponentsg52.2, 2.5,
and 2.6, respectively. Bullets denote the mean length of the bu
for Pin516.5 dB, which is nearly field independent.
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creasing amplitudes of the bursts in Fig. 15. Unfortunate
the few noisy contracting cycles do not allow a reasona
estimation ofts . Looking for an independent estimate ofts ,
we made the additional and very restrictive assumption
the total dissipation is not heavily affected by small chan
of Pin . Then the sum of both rates can be considered a
constant,ts

211tu
215const, which may be obtained by fi

ting Eq.~6! to one of the values ofg. Then the other scaling
exponents can be checked independently from this cons
and from the respective experimental values oftu only. It is
clear that we cannot expect quantitative agreement from s
a rough estimation, but the tendency of variation@g51.4,
2.5 ~fitted!, and 2.7] is in accordance with the experimen
values of Fig. 16. A more reliable comparison has to
based on the complete phase space reconstruction of the
jectory in the vicinity of the orbit, but this would be beyon
the scope of our paper.

B. On-off intermittency

On-off intermittency @22–24# occurs at a globa
symmetry-breaking bifurcation calledblowout bifurcationby
Ott and Sommerer@25#. At this bifurcation the formerly
stable invariant manifold loses its stability, and the syst
dynamics extends to additional dimensions of the ph
space. If the dynamics on the manifold is irregular due t
chaotic attractor or noise, and if there are no other attrac
outside the manifold, on-off intermittency occurs above
blowout bifurcation point. Statistical properties of the on-o
intermittency can be obtained from the simple map

xn115aynxn , ~7!

wherexn defines the distance from the invariant manifold,yn
describes the dynamics on the manifold, anda is a control
parameter. For real systems, nonlinear terms and add
noise have to be included, but the particular properties
both of them are not important~see, e.g., Ref.@26,27#!. The
theoretical analysis predicts for the distribution of the ‘‘lam
nar’’ lengths as well as for the dependence of the mean la
nar length on the deviation ofa from the critical point
power-law scalings with the exponents2 3

2 and21, respec-
tively @28#. These exponents coincide with the scaling exp
nents for type-III intermittency, demonstrating some simil
ity between these two cases, while the physical backgro
is essentially different. The difference can also clearly
seen from experimental time series exhibiting irregular
havior in both laminar and burst phases.

We reported on-off intermittency in spin-wave instabi
ties in Ref. @29#. A significant criterion was to look for
chaos-chaos intermittency with proper scaling exponents
typical time series is presented in Fig. 17, and experime
power-law scalings are shown in Figs. 18 and 19. The
cently predicted symmetry between laminar and burst pha
@30,31# has not yet been observed in our experiment, pr
ably due to problems with the distinction of long bur
phases from noisy experimental data.

An essential feature of on-off intermittency is the ad
tional degree of freedom which becomes unstable via a
bal symmetry-breaking bifurcation. The underlying physic
mechanism is probably that of the transitory excitation of
additional spin-wave mode through a three-magnon proc
,
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@6,32#. In our experimental system this additional degree
freedom could be a pair of spin waves at half the pump
frequency. The excitation of such a pair, which is of ze
amplitude below the bifurcation point, is in complete an
ogy with the excitation of the first, critical spin-wave pair
the Suhl threshold. Thus we assume that at low microw
power, as well as within the highly chaotic regim
symmetry-breaking bifurcations dominate the system
namics. This presumption is confirmed by the fact that
type of nonlinear coupling is the same for the spin-wa
system@29,32# and for the model systems exhibiting on-o
intermittency@Eq. ~7!#. This coupling is bilinear in the am
plitude of the additional mode and in the~nonzero! chaotic
mode which is already excited.~For a more detailed discus
sion see the Appendix.!

FIG. 17. Time series showing on-off intermittency in the coi
cidence regime (n52.388 GHz, H5802.5 Oe, andPin514.5
dBm!.

FIG. 18. Distribution of the laminar lengths, i.e., the time inte
vals between two bursts, from the time series shown in Fig. 17.l is
measured inms. The solid line corresponds to a power-law scali
of 2

3
2 .
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C. Noise-induced phenomena

In the chaotic regime of our experiment we have obser
not only crisis-induced and on-off intermittency. In som
cases we were unable to identify the bifurcation respons
for the occurrence of intermittency. An example of such
time series is shown in Fig. 20.

We suppose that this behavior can be related to the no
induced hopping between several attractors in systems ex
iting multistability @33#. In that situation, the system has tw
or more stable states for the same set of external param
~see Fig. 2!. By additional noise, the system leaves from tim
to time the basin of attraction of the original state and en
that of another attractor. This happens more easily in a s
ation when the boundaries of the basin are fractal
riddled, i.e., closely interwoven. Then, under the influence
noise, the system wanders irregularly between several at
tors. Since in the time domain this behavior shows a str
similarity to the other types of intermittency, this phenom
enon is callednoise-induced intermittency. Assuming that
the probability to leave the attractor per time unit is consta
the lengths of the time intervals the system spends on
attractor obey an exponential distribution. This result is
accordance with our experimental findings~Fig. 21!.

Noise-induced intermittency may be used to obtain m
information on the system dynamics. By adding noise t
multistable system the intermittent jumping between coex

FIG. 19. Dependence of the inverse mean laminar length
magnetic field. The straight line fitted to the data corresponds to
scaling exponent21, and yields the bifurcation pointHc5802.09
Oe.

FIG. 20. Intermittent time series measured in the coincide
regime (n52.389 GHz,H5840 Oe, andPin57 dBm!.
d
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ing attractors can externally be induced. The analysis of
mutual transition rates could give further insight into t
topology of the system. Current work on this topic is
progress@34#.

V. CONCLUSION

We have presented the observation and detailed ana
of intermittency in high-power FMR experiments on yttriu
iron garnet spheres. A large variety of intermittent behavio
including all ‘‘classical’’ Pomeau-Manneville types I, II, an
III intermittency, crisis-induced intermittency, and on-off in
termittency, was found. We were able to identify each
these types, qualitatively from direct manifestation of t
bifurcation properties in time series data, quantitatively fro
reconstructed return maps or from the scaling-laws occur
in the distribution and control-parameter dependence of
laminar lengths. As a result, it is demonstrated that the s
wave experiment renders an excellent possibility to stu
intermittency in a real experimental situation. Moreover,
were able to attain important physical understanding fr
the analysis of intermittency, e.g., the occurrence of on-
intermittency in the coincidence regime gives a strong h
how new degrees of freedom could add to the system
namics. Finally, new concepts in experimental nonlinear
namics that are based on the intermittent switching betw
bistable or multistable states can be nicely studied in
system. A recent example refers to ‘‘noise-free’’ stochas
resonance@35# which was observed in conjunction wit
type-III intermittency under subsidiary absorption.

n
e

e

FIG. 21. Integrated distribution of the laminar~top! and chaotic
~bottom! lengths for the time series shown in Fig. 20. The so
lines are fits to an exponential distribution expected for noi
induced intermittency.
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APPENDIX: DERIVATION OF INTERMITTENCY
CHARACTERISTICS FROM THE EQUATION OF MOTION

A physical understanding of the observed intermitten
phenomena requires that their specific mechanisms~e.g., the
local or global bifurcations! can be related to the underlyin
parametric process described by Eq.~1!. To give examples,
we present analytical derivations of such bifurcations for
Pomeau-Manneville type-II intermittency, and for on-off i
termittency. Note that in both cases our experimental d
were taken under such conditions~see the discussion in Re
@11#! that the excited modes participating in the nonline
mechanism are of plain spin-wave type with relatively lar
wave numbers of the order of 105 cm21. This implies that
the nonlinear coupling coefficients are essentially diagona
k: rkk8.rkk•dkk8 , and Eq.~1! simplifies to

ȧ0~ t !52@ iDv01G0#a02(
k

rkk* ak
22 igh,

~A1!

ȧk~ t !52@ iDvk1Gk#ak1rkka0ak* ,

where the abbreviationsDv0[v02vp and Dvk[vk
2vp/2 have been used. We just mention that the comp
phase of the coupling coefficient can be absorbed in a red
nition of the magnon amplitudesak , so that therkk may be
considered as real quantities.

1. Pomeau-Manneville type II

In order to show that Eq.~A1! supports Pomeau
Manneville intermittency of type II, one has to prove th
occurrence of a subcritical Hopf bifurcation. To this end w
consider an even more simplified form of Eq.~A1! where the
uniform mode interacts with onlyonespin-wave mode. For
this simple two-mode model a nontrivial stable fixed po
has been reported to occur atgh5AG0

21Dv0
2/urkku @36# in

the specific case of resonant parametric pumpingDvk50. In
the general nonresonant case, however, the stability of
nontrivial steady statea05a0

S,ak5ak
SÞ0 may be affected by

stronger pumping. Looking for the linear stability of the no
trivial fixed point, one has to solve in general a characteri
equation of the fourth degree, since the two-mode mode
in general characterized by four degrees of freedom, e.g.
amplitude and phase of either mode. To keep the prob
analytically tractable, we applied a perturbation method w
respect to the dimensionless parametersg[G0 /Gk and
ucku2[urkkak

S/Gku2. At order zero the eigenvalues readl1,2

56 iDv0 ,l3522Gk , andl450. In first order of perturba-
tion we obtain
s
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l1,256 iDv02gGk12ucku2Gk

Gk
2

Dv0
2~4Gk

21Dv0
2!

3$2Dv0
212~2Dv0Dvk!

6 iDv0@2Gk
21Dv0

22~2Dv0Dvk!#/Gk%, ~A2!

l4524Gkucku2~2Dv0Dvk!/~2Dv0
2!, ~A3!

while l3 remains negative. In order to have a Hopf bifurc
tion the real part of the complex conjugate pairl15l2* has
to change from negative to positive value, whilel4,0. Both
conditions require the inequality 2(2Dv0Dvk)>Dv0

2.0,
with the Hopf bifurcation occurring atucku2/g5Dv0

2(4Gk
2

1Dv0
2)/@(4(2Dv0Dvk)22Dv0

2)Gk
2#. The latter condition

implicitly yields a condition for the driving amplitude. Th
distinction between subcritical and supercritical bifurcati
is related to the sign of the real part of the cubic coefficie
in the ~complex valued! Hopf normal form, ż5l1z
1Ruzu2z. After some straightforward but lengthy algebra w
obtain

ReR5
8ucku2Gk

2@2~2Dv0Dvk!2Dv0
2#

~2l4!Dv0
2@4Gk

21Dv0
2#2

3@Gk
21~2Dv0Dvk!2Dvk

2#. ~A4!

The sign of the real part is determined by the last fact
Thus the change from the supercritical to subcritical bifur
tion occurs at

Gk
21~2Dv0Dvk!2Dvk

250. ~A5!

Moreover one has to realize that the proper type of bifur
tion is a condition necessary but not sufficient for the occ
rence of intermittency, because of the related reinject
mechanism. This part of the problem can only be analy
by numerical simulations in most cases. We refer to previ
simulations on multimode models@37#, which, in fact,
yielded different kinds of intermittent behaviors includin
type-III and on-off intermittency.

2. On-off intermittency

The essential feature of on-off intermittency is the ad
tional degree of freedom becoming unstable via a glo
symmetry-breaking bifurcation. Consider a set of spin wa
interacting with each other through the uniform mode a
forming a chaotic ensemble. In terms of a multimode mo
~A1!, the coupling between the uniform modea0 ~the ‘‘cha-
otic mode’’! and any other spin waveaq not being initially in
the ensemble is governed by

ȧq~ t !52@ iDvq1Gq#aq1rqqa0aq* . ~A6!

By virtue of the chaotic dynamics ofa0 , the modeaq may be
parametrically excited, giving rise to intermittent oscill
tions. As usual in parametric instabilities an analytical e
pression for the corresponding threshold is difficult to obta
If one models the chaotic dynamics ofa0 by a Gaussian
white noise,̂ a0(t)a0* &5ua0u2d(t), then the threshold for in-
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termittency is obtained asua0u25Gq /urqqu2. Contrary to
simple models of on-off intermittency, the mechanism
the saturation of the spin wave amplitude is here not rela
to nonlinear contributions but may come from a dephas
mechanism developed in the context of theS theory.

Altogether, it is possible that a certain spin waveaq which
has a vanishing amplitude below some critical value of
gn

s
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hy

u
as
d

, J
r
d
g

e

control parameter, becomes visible in the global system
namics above a threshold. The numerical results of Ref.@32#
indicate that on-off intermittency seems to be a quite co
mon phenomenon in such systems. The only additional c
dition is the absence of other attractors outside the invar
manifold. In this case the diffusionlike dynamics might e
sure reinjection, and the intermittent behavior can occur.
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@30# A. Čenys and H. Lustfeld, J. Phys. A29, 11 ~1996!.
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